MLflow Example
Once you have a Union account, install union
:
pip install union
Export the following environment variable to build and push images to your own container registry:
# replace with your registry name
export IMAGE_SPEC_REGISTRY="<your-container-registry>"
Then run the following commands to run the workflow:
git clone https://github.com/unionai/unionai-examples
cd unionai-examples
union run --remote tutorials/sentiment_classifier/sentiment_classifier.py main --model distilbert-base-uncased
The source code for this tutorial can be found here {octicon}mark-github
.
import mlflow.keras
import tensorflow as tf
Let’s first import the libraries.
from flytekit import ImageSpec, Resources, task, workflow
from flytekitplugins.mlflow import mlflow_autolog
custom_image = ImageSpec(registry="ghcr.io/flyteorg", packages=["flytekitplugins-mlflow", "tensorflow"])
Run a model training here and generate metrics and parameters.
Add mlflow_autolog
to the task, then flyte will automatically log the metric to the Flyte Deck.
@task(enable_deck=True, container_image=custom_image, requests=Resources(mem="3000Mi"))
@mlflow_autolog(framework=mlflow.keras)
def train_model(epochs: int):
# Refer to https://www.tensorflow.org/tutorials/keras/classification
fashion_mnist = tf.keras.datasets.fashion_mnist
(train_images, train_labels), (_, _) = fashion_mnist.load_data()
train_images = train_images / 255.0
model = tf.keras.Sequential(
[
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dense(10),
]
)
model.compile(
optimizer="adam",
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=["accuracy"],
)
model.fit(train_images, train_labels, epochs=epochs)
Finally, we put everything together into a workflow:
@workflow
def ml_pipeline(epochs: int):
train_model(epochs=epochs)
if __name__ == "__main__":
print(f"Running {__file__} main...")
ml_pipeline(epochs=5)