Memory Machine Cloud agent example usage
Once you have a Union account, install union
:
pip install union
Export the following environment variable to build and push images to your own container registry:
# replace with your registry name
export IMAGE_SPEC_REGISTRY="<your-container-registry>"
Then run the following commands to run the workflow:
git clone https://github.com/unionai/unionai-examples
cd unionai-examples
union run --remote tutorials/sentiment_classifier/sentiment_classifier.py main --model distilbert-base-uncased
The source code for this tutorial can be found here {octicon}mark-github
.
from flytekit import Resources, task, workflow
from flytekitplugins.mmcloud import MMCloudConfig
MMCloudConfig
configures MMCloudTask
. Tasks specified with MMCloudConfig
will be executed using MMCloud. Tasks will be executed with requests cpu="1"
and mem="1Gi"
by default.
@task(task_config=MMCloudConfig())
def to_str(i: int) -> str:
return str(i)
@task(task_config=MMCloudConfig())
def to_int(s: str) -> int:
return int(s)
Resource (cpu and mem) requests and limits, container images, and environment variable specifications are supported.
@task(
task_config=MMCloudConfig(submit_extra="--migratePolicy [enable=true]"),
requests=Resources(cpu="1", mem="1Gi"),
limits=Resources(cpu="2", mem="4Gi"),
environment={"KEY": "value"},
)
def concatenate_str(s1: str, s2: str) -> str:
return s1 + s2
@workflow
def concatenate_int_wf(i1: int, i2: int) -> int:
i1_str = to_str(i=i1)
i2_str = to_str(i=i2)
return to_int(s=concatenate_str(s1=i1_str, s2=i2_str))