0.0.0+develop

flytekitplugins.whylogs

Directory

Classes

Class Description
WhylogsConstraintsRenderer Creates a whylogs’ Constraints report from a Constraints object.
WhylogsDatasetProfileTransformer Transforms whylogs Dataset Profile Views to and from a Schema (typed/untyped).
WhylogsSummaryDriftRenderer Creates a whylogs’ Summary Drift report from two pandas DataFrames.

flytekitplugins.whylogs.WhylogsConstraintsRenderer

Creates a whylogs’ Constraints report from a Constraints object. Currently our API requires the user to have a profiled DataFrame in place to be able to use it. Then the report will render a nice HTML that will let users check which constraints passed or failed their logic. An example constraints object definition can be written as follows:

.. code-block:: python

profile_view = why.log(df).view()
builder = ConstraintsBuilder(profile_view)
num_constraint = MetricConstraint(
                    name=f'numbers between {min_value} and {max_value} only',
                    condition=lambda x: x.min > min_value and x.max < max_value,
                    metric_selector=MetricsSelector(
                                            metric_name='distribution',
                                            column_name='sepal_length'
                                            )
                )

builder.add_constraint(num_constraint)
constraints = builder.build()

Each Constraints object (builder.build() in the former example) can have as many constraints as desired. If you want to learn more, check out our docs and examples at https://whylogs.readthedocs.io/

Methods

Method Description
to_html()

to_html()

def to_html(
    constraints: whylogs.core.constraints.metric_constraints.Constraints,
) -> str
Parameter Type
constraints whylogs.core.constraints.metric_constraints.Constraints

flytekitplugins.whylogs.WhylogsDatasetProfileTransformer

Transforms whylogs Dataset Profile Views to and from a Schema (typed/untyped)

def WhylogsDatasetProfileTransformer()

Methods

Method Description
assert_type()
from_binary_idl() This function primarily handles deserialization for untyped dicts, dataclasses, Pydantic BaseModels, and attribute access.
from_generic_idl() TODO: Support all Flyte Types.
get_literal_type() Converts the python type to a Flyte LiteralType.
guess_python_type() Converts the Flyte LiteralType to a python object type.
isinstance_generic()
to_html() Converts any python val (dataframe, int, float) to a html string, and it will be wrapped in the HTML div.
to_literal() Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type.
to_python_value() Converts the given Literal to a Python Type.

assert_type()

def assert_type(
    t: Type[T],
    v: T,
)
Parameter Type
t Type[T]
v T

from_binary_idl()

def from_binary_idl(
    binary_idl_object: Binary,
    expected_python_type: Type[T],
) -> Optional[T]

This function primarily handles deserialization for untyped dicts, dataclasses, Pydantic BaseModels, and attribute access.`

For untyped dict, dataclass, and pydantic basemodel: Life Cycle (Untyped Dict as example): python val -> msgpack bytes -> binary literal scalar -> msgpack bytes -> python val (to_literal) (from_binary_idl)

For attribute access: Life Cycle: python val -> msgpack bytes -> binary literal scalar -> resolved golang value -> binary literal scalar -> msgpack bytes -> python val (to_literal) (propeller attribute access) (from_binary_idl)

Parameter Type
binary_idl_object Binary
expected_python_type Type[T]

from_generic_idl()

def from_generic_idl(
    generic: Struct,
    expected_python_type: Type[T],
) -> Optional[T]

TODO: Support all Flyte Types. This is for dataclass attribute access from input created from the Flyte Console.

Note:

  • This can be removed in the future when the Flyte Console support generate Binary IDL Scalar as input.
Parameter Type
generic Struct
expected_python_type Type[T]

get_literal_type()

def get_literal_type(
    t: typing.Type[whylogs.core.view.dataset_profile_view.DatasetProfileView],
) -> flytekit.models.types.LiteralType

Converts the python type to a Flyte LiteralType

Parameter Type
t typing.Type[whylogs.core.view.dataset_profile_view.DatasetProfileView]

guess_python_type()

def guess_python_type(
    literal_type: LiteralType,
) -> Type[T]

Converts the Flyte LiteralType to a python object type.

Parameter Type
literal_type LiteralType

isinstance_generic()

def isinstance_generic(
    obj,
    generic_alias,
)
Parameter Type
obj
generic_alias

to_html()

def to_html(
    ctx: flytekit.core.context_manager.FlyteContext,
    python_val: whylogs.core.view.dataset_profile_view.DatasetProfileView,
    expected_python_type: typing.Type[whylogs.core.view.dataset_profile_view.DatasetProfileView],
) -> str

Converts any python val (dataframe, int, float) to a html string, and it will be wrapped in the HTML div

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
python_val whylogs.core.view.dataset_profile_view.DatasetProfileView
expected_python_type typing.Type[whylogs.core.view.dataset_profile_view.DatasetProfileView]

to_literal()

def to_literal(
    ctx: flytekit.core.context_manager.FlyteContext,
    python_val: whylogs.core.view.dataset_profile_view.DatasetProfileView,
    python_type: typing.Type[whylogs.core.view.dataset_profile_view.DatasetProfileView],
    expected: flytekit.models.types.LiteralType,
) -> flytekit.models.literals.Literal

Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type. Implementers should refrain from using type(python_val) instead rely on the passed in python_type. If these do not match (or are not allowed) the Transformer implementer should raise an AssertionError, clearly stating what was the mismatch

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
python_val whylogs.core.view.dataset_profile_view.DatasetProfileView
python_type typing.Type[whylogs.core.view.dataset_profile_view.DatasetProfileView]
expected flytekit.models.types.LiteralType

to_python_value()

def to_python_value(
    ctx: flytekit.core.context_manager.FlyteContext,
    lv: flytekit.models.literals.Literal,
    expected_python_type: typing.Type[whylogs.core.view.dataset_profile_view.DatasetProfileView],
) -> ~T

Converts the given Literal to a Python Type. If the conversion cannot be done an AssertionError should be raised

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
lv flytekit.models.literals.Literal
expected_python_type typing.Type[whylogs.core.view.dataset_profile_view.DatasetProfileView]

Properties

Property Type Description
is_async
name
python_type
This returns the python type
type_assertions_enabled
Indicates if the transformer wants type assertions to be enabled at the core type engine layer

flytekitplugins.whylogs.WhylogsSummaryDriftRenderer

Creates a whylogs’ Summary Drift report from two pandas DataFrames. One of them is the reference and the other one is the target data, meaning that this is what the report will compare it against.

Methods

Method Description
to_html() This static method will profile the input data and then generate an HTML report.

to_html()

def to_html(
    reference_data: pandas.core.frame.DataFrame,
    target_data: pandas.core.frame.DataFrame,
) -> str

This static method will profile the input data and then generate an HTML report with the Summary Drift calculations for all the dataframe’s columns

Parameter Type
reference_data pandas.core.frame.DataFrame
target_data pandas.core.frame.DataFrame