flytekitplugins.spark.task
Directory
Classes
Class | Description |
---|---|
Databricks |
Deprecated. |
DatabricksV2 |
Use this to configure a Databricks task. |
PysparkFunctionTask |
Actual Plugin that transforms the local python code for execution within a spark context. |
Spark |
Use this to configure a SparkContext for a your task. |
Methods
Method | Description |
---|---|
new_spark_session() |
Optionally creates a new spark session and returns it. |
Variables
Property | Type | Description |
---|---|---|
PRIMARY_CONTAINER_DEFAULT_NAME |
str |
Methods
new_spark_session()
def new_spark_session(
name: str,
conf: typing.Dict[str, str],
)
Optionally creates a new spark session and returns it. In cluster mode (running in hosted flyte, this will disregard the spark conf passed in)
This method is safe to be used from any other method. That is one reason why, we have duplicated this code fragment with the pre-execute. For example in the notebook scenario we might want to call it from a separate kernel
Parameter | Type |
---|---|
name |
str |
conf |
typing.Dict[str, str] |
flytekitplugins.spark.task.Databricks
Deprecated. Use DatabricksV2 instead.
class Databricks(
spark_conf: typing.Optional[typing.Dict[str, str]],
hadoop_conf: typing.Optional[typing.Dict[str, str]],
executor_path: typing.Optional[str],
applications_path: typing.Optional[str],
driver_pod: typing.Optional[flytekit.core.pod_template.PodTemplate],
executor_pod: typing.Optional[flytekit.core.pod_template.PodTemplate],
databricks_conf: typing.Optional[typing.Dict[str, typing.Union[str, dict]]],
databricks_instance: typing.Optional[str],
)
Parameter | Type |
---|---|
spark_conf |
typing.Optional[typing.Dict[str, str]] |
hadoop_conf |
typing.Optional[typing.Dict[str, str]] |
executor_path |
typing.Optional[str] |
applications_path |
typing.Optional[str] |
driver_pod |
typing.Optional[flytekit.core.pod_template.PodTemplate] |
executor_pod |
typing.Optional[flytekit.core.pod_template.PodTemplate] |
databricks_conf |
typing.Optional[typing.Dict[str, typing.Union[str, dict]]] |
databricks_instance |
typing.Optional[str] |
flytekitplugins.spark.task.DatabricksV2
Use this to configure a Databricks task. Task’s marked with this will automatically execute natively onto databricks platform as a distributed execution of spark
class DatabricksV2(
spark_conf: typing.Optional[typing.Dict[str, str]],
hadoop_conf: typing.Optional[typing.Dict[str, str]],
executor_path: typing.Optional[str],
applications_path: typing.Optional[str],
driver_pod: typing.Optional[flytekit.core.pod_template.PodTemplate],
executor_pod: typing.Optional[flytekit.core.pod_template.PodTemplate],
databricks_conf: typing.Optional[typing.Dict[str, typing.Union[str, dict]]],
databricks_instance: typing.Optional[str],
)
Parameter | Type |
---|---|
spark_conf |
typing.Optional[typing.Dict[str, str]] |
hadoop_conf |
typing.Optional[typing.Dict[str, str]] |
executor_path |
typing.Optional[str] |
applications_path |
typing.Optional[str] |
driver_pod |
typing.Optional[flytekit.core.pod_template.PodTemplate] |
executor_pod |
typing.Optional[flytekit.core.pod_template.PodTemplate] |
databricks_conf |
typing.Optional[typing.Dict[str, typing.Union[str, dict]]] |
databricks_instance |
typing.Optional[str] |
flytekitplugins.spark.task.PysparkFunctionTask
Actual Plugin that transforms the local python code for execution within a spark context
class PysparkFunctionTask(
task_config: flytekitplugins.spark.task.Spark,
task_function: typing.Callable,
container_image: typing.Union[str, flytekit.image_spec.image_spec.ImageSpec, NoneType],
kwargs,
)
Parameter | Type |
---|---|
task_config |
flytekitplugins.spark.task.Spark |
task_function |
typing.Callable |
container_image |
typing.Union[str, flytekit.image_spec.image_spec.ImageSpec, NoneType] |
kwargs |
**kwargs |
Methods
Method | Description |
---|---|
agent_signal_handler() |
|
compile() |
Generates a node that encapsulates this task in a workflow definition. |
compile_into_workflow() |
In the case of dynamic workflows, this function will produce a workflow definition at execution time which will. |
construct_node_metadata() |
Used when constructing the node that encapsulates this task as part of a broader workflow definition. |
dispatch_execute() |
This method translates Flyte’s Type system based input values and invokes the actual call to the executor. |
dynamic_execute() |
By the time this function is invoked, the local_execute function should have unwrapped the Promises and Flyte. |
execute() |
This method will be invoked to execute the task. |
find_lhs() |
|
get_command() |
Returns the command which should be used in the container definition for the serialized version of this task. |
get_config() |
Returns the task config as a serializable dictionary. |
get_container() |
Returns the container definition (if any) that is used to run the task on hosted Flyte. |
get_custom() |
Return additional plugin-specific custom data (if any) as a serializable dictionary. |
get_default_command() |
Returns the default pyflyte-execute command used to run this on hosted Flyte platforms. |
get_extended_resources() |
Returns the extended resources to allocate to the task on hosted Flyte. |
get_image() |
Update image spec based on fast registration usage, and return string representing the image. |
get_input_types() |
Returns the names and python types as a dictionary for the inputs of this task. |
get_k8s_pod() |
Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte. |
get_sql() |
Returns the Sql definition (if any) that is used to run the task on hosted Flyte. |
get_type_for_input_var() |
Returns the python type for an input variable by name. |
get_type_for_output_var() |
Returns the python type for the specified output variable by name. |
local_execute() |
This function is used only in the local execution path and is responsible for calling dispatch execute. |
local_execution_mode() |
|
post_execute() |
Post execute is called after the execution has completed, with the user_params and can be used to clean-up,. |
pre_execute() |
This is the method that will be invoked directly before executing the task method and before all the inputs. |
reset_command_fn() |
Resets the command which should be used in the container definition of this task to the default arguments. |
sandbox_execute() |
Call dispatch_execute, in the context of a local sandbox execution. |
set_command_fn() |
By default, the task will run on the Flyte platform using the pyflyte-execute command. |
set_resolver() |
By default, flytekit uses the DefaultTaskResolver to resolve the task. |
to_k8s_pod() |
Convert the podTemplate to K8sPod. |
agent_signal_handler()
def agent_signal_handler(
resource_meta: flytekit.extend.backend.base_agent.ResourceMeta,
signum: int,
frame: frame,
) -> typing.Any
Parameter | Type |
---|---|
resource_meta |
flytekit.extend.backend.base_agent.ResourceMeta |
signum |
int |
frame |
frame |
compile()
def compile(
ctx: flytekit.core.context_manager.FlyteContext,
args,
kwargs,
) -> typing.Union[typing.Tuple[flytekit.core.promise.Promise], flytekit.core.promise.Promise, flytekit.core.promise.VoidPromise, NoneType]
Generates a node that encapsulates this task in a workflow definition.
Parameter | Type |
---|---|
ctx |
flytekit.core.context_manager.FlyteContext |
args |
*args |
kwargs |
**kwargs |
compile_into_workflow()
def compile_into_workflow(
ctx: FlyteContext,
task_function: Callable,
kwargs,
) -> Union[_dynamic_job.DynamicJobSpec, _literal_models.LiteralMap]
In the case of dynamic workflows, this function will produce a workflow definition at execution time which will then proceed to be executed.
Parameter | Type |
---|---|
ctx |
FlyteContext |
task_function |
Callable |
kwargs |
**kwargs |
construct_node_metadata()
def construct_node_metadata()
Used when constructing the node that encapsulates this task as part of a broader workflow definition.
dispatch_execute()
def dispatch_execute(
ctx: flytekit.core.context_manager.FlyteContext,
input_literal_map: flytekit.models.literals.LiteralMap,
) -> typing.Union[flytekit.models.literals.LiteralMap, flytekit.models.dynamic_job.DynamicJobSpec, typing.Coroutine]
This method translates Flyte’s Type system based input values and invokes the actual call to the executor This method is also invoked during runtime.
VoidPromise
is returned in the case when the task itself declares no outputs.Literal Map
is returned when the task returns either one more outputs in the declaration. Individual outputs may be noneDynamicJobSpec
is returned when a dynamic workflow is executed
Parameter | Type |
---|---|
ctx |
flytekit.core.context_manager.FlyteContext |
input_literal_map |
flytekit.models.literals.LiteralMap |
dynamic_execute()
def dynamic_execute(
task_function: Callable,
kwargs,
) -> Any
By the time this function is invoked, the local_execute function should have unwrapped the Promises and Flyte literal wrappers so that the kwargs we are working with here are now Python native literal values. This function is also expected to return Python native literal values.
Since the user code within a dynamic task constitute a workflow, we have to first compile the workflow, and then execute that workflow.
When running for real in production, the task would stop after the compilation step, and then create a file representing that newly generated workflow, instead of executing it.
Parameter | Type |
---|---|
task_function |
Callable |
kwargs |
**kwargs |
execute()
def execute(
kwargs,
) -> typing.Any
This method will be invoked to execute the task. If you do decide to override this method you must also handle dynamic tasks or you will no longer be able to use the task as a dynamic task generator.
Parameter | Type |
---|---|
kwargs |
**kwargs |
find_lhs()
def find_lhs()
get_command()
def get_command(
settings: SerializationSettings,
) -> List[str]
Returns the command which should be used in the container definition for the serialized version of this task registered on a hosted Flyte platform.
Parameter | Type |
---|---|
settings |
SerializationSettings |
get_config()
def get_config(
settings: SerializationSettings,
) -> Optional[Dict[str, str]]
Returns the task config as a serializable dictionary. This task config consists of metadata about the custom defined for this task.
Parameter | Type |
---|---|
settings |
SerializationSettings |
get_container()
def get_container(
settings: SerializationSettings,
) -> _task_model.Container
Returns the container definition (if any) that is used to run the task on hosted Flyte.
Parameter | Type |
---|---|
settings |
SerializationSettings |
get_custom()
def get_custom(
settings: flytekit.configuration.SerializationSettings,
) -> typing.Dict[str, typing.Any]
Return additional plugin-specific custom data (if any) as a serializable dictionary.
Parameter | Type |
---|---|
settings |
flytekit.configuration.SerializationSettings |
get_default_command()
def get_default_command(
settings: SerializationSettings,
) -> List[str]
Returns the default pyflyte-execute command used to run this on hosted Flyte platforms.
Parameter | Type |
---|---|
settings |
SerializationSettings |
get_extended_resources()
def get_extended_resources(
settings: SerializationSettings,
) -> Optional[tasks_pb2.ExtendedResources]
Returns the extended resources to allocate to the task on hosted Flyte.
Parameter | Type |
---|---|
settings |
SerializationSettings |
get_image()
def get_image(
settings: SerializationSettings,
) -> str
Update image spec based on fast registration usage, and return string representing the image
Parameter | Type |
---|---|
settings |
SerializationSettings |
get_input_types()
def get_input_types()
Returns the names and python types as a dictionary for the inputs of this task.
get_k8s_pod()
def get_k8s_pod(
settings: SerializationSettings,
) -> _task_model.K8sPod
Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.
Parameter | Type |
---|---|
settings |
SerializationSettings |
get_sql()
def get_sql(
settings: flytekit.configuration.SerializationSettings,
) -> typing.Optional[flytekit.models.task.Sql]
Returns the Sql definition (if any) that is used to run the task on hosted Flyte.
Parameter | Type |
---|---|
settings |
flytekit.configuration.SerializationSettings |
get_type_for_input_var()
def get_type_for_input_var(
k: str,
v: typing.Any,
) -> typing.Type[typing.Any]
Returns the python type for an input variable by name.
Parameter | Type |
---|---|
k |
str |
v |
typing.Any |
get_type_for_output_var()
def get_type_for_output_var(
k: str,
v: typing.Any,
) -> typing.Type[typing.Any]
Returns the python type for the specified output variable by name.
Parameter | Type |
---|---|
k |
str |
v |
typing.Any |
local_execute()
def local_execute(
ctx: flytekit.core.context_manager.FlyteContext,
kwargs,
) -> typing.Union[typing.Tuple[flytekit.core.promise.Promise], flytekit.core.promise.Promise, flytekit.core.promise.VoidPromise, typing.Coroutine, NoneType]
This function is used only in the local execution path and is responsible for calling dispatch execute. Use this function when calling a task with native values (or Promises containing Flyte literals derived from Python native values).
Parameter | Type |
---|---|
ctx |
flytekit.core.context_manager.FlyteContext |
kwargs |
**kwargs |
local_execution_mode()
def local_execution_mode()
post_execute()
def post_execute(
user_params: typing.Optional[flytekit.core.context_manager.ExecutionParameters],
rval: typing.Any,
) -> typing.Any
Post execute is called after the execution has completed, with the user_params and can be used to clean-up, or alter the outputs to match the intended tasks outputs. If not overridden, then this function is a No-op
Parameter | Type |
---|---|
user_params |
typing.Optional[flytekit.core.context_manager.ExecutionParameters] |
rval |
typing.Any |
pre_execute()
def pre_execute(
user_params: flytekit.core.context_manager.ExecutionParameters,
) -> flytekit.core.context_manager.ExecutionParameters
This is the method that will be invoked directly before executing the task method and before all the inputs are converted. One particular case where this is useful is if the context is to be modified for the user process to get some user space parameters. This also ensures that things like SparkSession are already correctly setup before the type transformers are called
This should return either the same context of the mutated context
Parameter | Type |
---|---|
user_params |
flytekit.core.context_manager.ExecutionParameters |
reset_command_fn()
def reset_command_fn()
Resets the command which should be used in the container definition of this task to the default arguments. This is useful when the command line is overridden at serialization time.
sandbox_execute()
def sandbox_execute(
ctx: flytekit.core.context_manager.FlyteContext,
input_literal_map: flytekit.models.literals.LiteralMap,
) -> flytekit.models.literals.LiteralMap
Call dispatch_execute, in the context of a local sandbox execution. Not invoked during runtime.
Parameter | Type |
---|---|
ctx |
flytekit.core.context_manager.FlyteContext |
input_literal_map |
flytekit.models.literals.LiteralMap |
set_command_fn()
def set_command_fn(
get_command_fn: Optional[Callable[[SerializationSettings], List[str]]],
)
By default, the task will run on the Flyte platform using the pyflyte-execute command. However, it can be useful to update the command with which the task is serialized for specific cases like running map tasks (“pyflyte-map-execute”) or for fast-executed tasks.
Parameter | Type |
---|---|
get_command_fn |
Optional[Callable[[SerializationSettings], List[str]]] |
set_resolver()
def set_resolver(
resolver: TaskResolverMixin,
)
By default, flytekit uses the DefaultTaskResolver to resolve the task. This method allows the user to set a custom task resolver. It can be useful to override the task resolver for specific cases like running tasks in the jupyter notebook.
Parameter | Type |
---|---|
resolver |
TaskResolverMixin |
to_k8s_pod()
def to_k8s_pod(
pod_template: typing.Optional[flytekit.core.pod_template.PodTemplate],
) -> typing.Optional[flytekit.models.task.K8sPod]
Convert the podTemplate to K8sPod
Parameter | Type |
---|---|
pod_template |
typing.Optional[flytekit.core.pod_template.PodTemplate] |
Properties
Property | Type | Description |
---|---|---|
container_image |
||
deck_fields |
If not empty, this task will output deck html file for the specified decks |
|
disable_deck |
If true, this task will not output deck html file |
|
docs |
||
enable_deck |
If true, this task will output deck html file |
|
environment |
Any environment variables that supplied during the execution of the task. |
|
execution_mode |
||
instantiated_in |
||
interface |
||
lhs |
||
location |
||
metadata |
||
name |
Returns the name of the task. |
|
node_dependency_hints |
||
python_interface |
Returns this task’s python interface. |
|
resources |
||
security_context |
||
task_config |
Returns the user-specified task config which is used for plugin-specific handling of the task. |
|
task_function |
||
task_resolver |
||
task_type |
||
task_type_version |
flytekitplugins.spark.task.Spark
Use this to configure a SparkContext for a your task. Task’s marked with this will automatically execute natively onto K8s as a distributed execution of spark
Attributes: spark_conf (Optional[Dict[str, str]]): Spark configuration dictionary. hadoop_conf (Optional[Dict[str, str]]): Hadoop configuration dictionary. executor_path (Optional[str]): Path to the Python binary for PySpark execution. applications_path (Optional[str]): Path to the main application file. driver_pod (Optional[PodTemplate]): The pod template for the Spark driver pod. executor_pod (Optional[PodTemplate]): The pod template for the Spark executor pod.
class Spark(
spark_conf: typing.Optional[typing.Dict[str, str]],
hadoop_conf: typing.Optional[typing.Dict[str, str]],
executor_path: typing.Optional[str],
applications_path: typing.Optional[str],
driver_pod: typing.Optional[flytekit.core.pod_template.PodTemplate],
executor_pod: typing.Optional[flytekit.core.pod_template.PodTemplate],
)
Parameter | Type |
---|---|
spark_conf |
typing.Optional[typing.Dict[str, str]] |
hadoop_conf |
typing.Optional[typing.Dict[str, str]] |
executor_path |
typing.Optional[str] |
applications_path |
typing.Optional[str] |
driver_pod |
typing.Optional[flytekit.core.pod_template.PodTemplate] |
executor_pod |
typing.Optional[flytekit.core.pod_template.PodTemplate] |