0.0.0+develop

flytekitplugins.spark.agent

Directory

Classes

Class Description
DatabricksAgent This is the base class for all async agents.
DatabricksAgentV2 Add DatabricksAgentV2 to support running the k8s spark and databricks spark together in the same workflow.
DatabricksJobMetadata

Methods

Method Description
get_header()
result_state_is_available()

Variables

Property Type Description
DATABRICKS_API_ENDPOINT str
DEFAULT_DATABRICKS_INSTANCE_ENV_KEY str
FLYTE_FAIL_ON_ERROR str

Methods

get_header()

def get_header()

result_state_is_available()

def result_state_is_available(
    life_cycle_state: str,
) -> bool
Parameter Type
life_cycle_state str

flytekitplugins.spark.agent.DatabricksAgent

This is the base class for all async agents. It defines the interface that all agents must implement. The agent service is responsible for invoking agents. The propeller will communicate with the agent service to create tasks, get the status of tasks, and delete tasks.

All the agents should be registered in the AgentRegistry. Agent Service will look up the agent based on the task type. Every task type can only have one agent.

def DatabricksAgent()

Methods

Method Description
create() Return a resource meta that can be used to get the status of the task.
delete() Delete the task.
get() Return the status of the task, and return the outputs in some cases.

create()

def create(
    task_template: flytekit.models.task.TaskTemplate,
    inputs: typing.Optional[flytekit.models.literals.LiteralMap],
    kwargs,
) -> flytekitplugins.spark.agent.DatabricksJobMetadata

Return a resource meta that can be used to get the status of the task.

Parameter Type
task_template flytekit.models.task.TaskTemplate
inputs typing.Optional[flytekit.models.literals.LiteralMap]
kwargs **kwargs

delete()

def delete(
    resource_meta: flytekitplugins.spark.agent.DatabricksJobMetadata,
    kwargs,
)

Delete the task. This call should be idempotent. It should raise an error if fails to delete the task.

Parameter Type
resource_meta flytekitplugins.spark.agent.DatabricksJobMetadata
kwargs **kwargs

get()

def get(
    resource_meta: flytekitplugins.spark.agent.DatabricksJobMetadata,
    kwargs,
) -> flytekit.extend.backend.base_agent.Resource

Return the status of the task, and return the outputs in some cases. For example, bigquery job can’t write the structured dataset to the output location, so it returns the output literals to the propeller, and the propeller will write the structured dataset to the blob store.

Parameter Type
resource_meta flytekitplugins.spark.agent.DatabricksJobMetadata
kwargs **kwargs

Properties

Property Type Description
metadata_type
task_category
task category that the agent supports

flytekitplugins.spark.agent.DatabricksAgentV2

Add DatabricksAgentV2 to support running the k8s spark and databricks spark together in the same workflow. This is necessary because one task type can only be handled by a single backend plugin.

spark -> k8s spark plugin databricks -> databricks agent

def DatabricksAgentV2()

Methods

Method Description
create() Return a resource meta that can be used to get the status of the task.
delete() Delete the task.
get() Return the status of the task, and return the outputs in some cases.

create()

def create(
    task_template: flytekit.models.task.TaskTemplate,
    inputs: typing.Optional[flytekit.models.literals.LiteralMap],
    kwargs,
) -> flytekitplugins.spark.agent.DatabricksJobMetadata

Return a resource meta that can be used to get the status of the task.

Parameter Type
task_template flytekit.models.task.TaskTemplate
inputs typing.Optional[flytekit.models.literals.LiteralMap]
kwargs **kwargs

delete()

def delete(
    resource_meta: flytekitplugins.spark.agent.DatabricksJobMetadata,
    kwargs,
)

Delete the task. This call should be idempotent. It should raise an error if fails to delete the task.

Parameter Type
resource_meta flytekitplugins.spark.agent.DatabricksJobMetadata
kwargs **kwargs

get()

def get(
    resource_meta: flytekitplugins.spark.agent.DatabricksJobMetadata,
    kwargs,
) -> flytekit.extend.backend.base_agent.Resource

Return the status of the task, and return the outputs in some cases. For example, bigquery job can’t write the structured dataset to the output location, so it returns the output literals to the propeller, and the propeller will write the structured dataset to the blob store.

Parameter Type
resource_meta flytekitplugins.spark.agent.DatabricksJobMetadata
kwargs **kwargs

Properties

Property Type Description
metadata_type
task_category
task category that the agent supports

flytekitplugins.spark.agent.DatabricksJobMetadata

class DatabricksJobMetadata(
    databricks_instance: str,
    run_id: str,
)
Parameter Type
databricks_instance str
run_id str

Methods

Method Description
decode() Decode the resource meta from bytes.
encode() Encode the resource meta to bytes.

decode()

def decode(
    data: bytes,
) -> ResourceMeta

Decode the resource meta from bytes.

Parameter Type
data bytes

encode()

def encode()

Encode the resource meta to bytes.