0.0.0+develop

flytekitplugins.openai.batch.task

Directory

Classes

Class Description
BatchEndpointTask This mixin class is used to run the async task locally, and it’s only used for local execution.
BatchResult
DownloadJSONFilesExecutor Please see the notes for the metaclass above first.
DownloadJSONFilesTask Please take a look at the comments for :py:class`flytekit.
OpenAIFileConfig
OpenAIFileDefaultImages Default images for the openai batch plugin.
UploadJSONLFileExecutor Please see the notes for the metaclass above first.
UploadJSONLFileTask Please take a look at the comments for :py:class`flytekit.

flytekitplugins.openai.batch.task.BatchEndpointTask

This mixin class is used to run the async task locally, and it’s only used for local execution. Task should inherit from this class if the task can be run in the agent.

Asynchronous tasks are tasks that take a long time to complete, such as running a query.

class BatchEndpointTask(
    name: str,
    config: typing.Dict[str, typing.Any],
    openai_organization: typing.Optional[str],
    kwargs,
)
Parameter Type
name str
config typing.Dict[str, typing.Any]
openai_organization typing.Optional[str]
kwargs **kwargs

Methods

Method Description
agent_signal_handler()
compile() Generates a node that encapsulates this task in a workflow definition.
construct_node_metadata() Used when constructing the node that encapsulates this task as part of a broader workflow definition.
dispatch_execute() This method translates Flyte’s Type system based input values and invokes the actual call to the executor.
execute()
find_lhs()
get_config() Returns the task config as a serializable dictionary.
get_container() Returns the container definition (if any) that is used to run the task on hosted Flyte.
get_custom() Return additional plugin-specific custom data (if any) as a serializable dictionary.
get_extended_resources() Returns the extended resources to allocate to the task on hosted Flyte.
get_input_types() Returns the names and python types as a dictionary for the inputs of this task.
get_k8s_pod() Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.
get_sql() Returns the Sql definition (if any) that is used to run the task on hosted Flyte.
get_type_for_input_var() Returns the python type for an input variable by name.
get_type_for_output_var() Returns the python type for the specified output variable by name.
local_execute() This function is used only in the local execution path and is responsible for calling dispatch execute.
local_execution_mode()
post_execute() Post execute is called after the execution has completed, with the user_params and can be used to clean-up,.
pre_execute() This is the method that will be invoked directly before executing the task method and before all the inputs.
sandbox_execute() Call dispatch_execute, in the context of a local sandbox execution.

agent_signal_handler()

def agent_signal_handler(
    resource_meta: flytekit.extend.backend.base_agent.ResourceMeta,
    signum: int,
    frame: frame,
) -> typing.Any
Parameter Type
resource_meta flytekit.extend.backend.base_agent.ResourceMeta
signum int
frame frame

compile()

def compile(
    ctx: flytekit.core.context_manager.FlyteContext,
    args,
    kwargs,
) -> typing.Union[typing.Tuple[flytekit.core.promise.Promise], flytekit.core.promise.Promise, flytekit.core.promise.VoidPromise, NoneType]

Generates a node that encapsulates this task in a workflow definition.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
args *args
kwargs **kwargs

construct_node_metadata()

def construct_node_metadata()

Used when constructing the node that encapsulates this task as part of a broader workflow definition.

dispatch_execute()

def dispatch_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
) -> typing.Union[flytekit.models.literals.LiteralMap, flytekit.models.dynamic_job.DynamicJobSpec, typing.Coroutine]

This method translates Flyte’s Type system based input values and invokes the actual call to the executor This method is also invoked during runtime.

  • VoidPromise is returned in the case when the task itself declares no outputs.
  • Literal Map is returned when the task returns either one more outputs in the declaration. Individual outputs may be none
  • DynamicJobSpec is returned when a dynamic workflow is executed
Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

execute()

def execute(
    kwargs,
) -> flytekit.models.literals.LiteralMap
Parameter Type
kwargs **kwargs

find_lhs()

def find_lhs()

get_config()

def get_config(
    settings: flytekit.configuration.SerializationSettings,
) -> typing.Optional[typing.Dict[str, str]]

Returns the task config as a serializable dictionary. This task config consists of metadata about the custom defined for this task.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_container()

def get_container(
    settings: flytekit.configuration.SerializationSettings,
) -> typing.Optional[flytekit.models.task.Container]

Returns the container definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_custom()

def get_custom(
    settings: flytekit.configuration.SerializationSettings,
) -> typing.Dict[str, typing.Any]

Return additional plugin-specific custom data (if any) as a serializable dictionary.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_extended_resources()

def get_extended_resources(
    settings: flytekit.configuration.SerializationSettings,
) -> typing.Optional[flyteidl.core.tasks_pb2.ExtendedResources]

Returns the extended resources to allocate to the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_input_types()

def get_input_types()

Returns the names and python types as a dictionary for the inputs of this task.

get_k8s_pod()

def get_k8s_pod(
    settings: flytekit.configuration.SerializationSettings,
) -> typing.Optional[flytekit.models.task.K8sPod]

Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_sql()

def get_sql(
    settings: flytekit.configuration.SerializationSettings,
) -> typing.Optional[flytekit.models.task.Sql]

Returns the Sql definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_type_for_input_var()

def get_type_for_input_var(
    k: str,
    v: typing.Any,
) -> typing.Type[typing.Any]

Returns the python type for an input variable by name.

Parameter Type
k str
v typing.Any

get_type_for_output_var()

def get_type_for_output_var(
    k: str,
    v: typing.Any,
) -> typing.Type[typing.Any]

Returns the python type for the specified output variable by name.

Parameter Type
k str
v typing.Any

local_execute()

def local_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    kwargs,
) -> typing.Union[typing.Tuple[flytekit.core.promise.Promise], flytekit.core.promise.Promise, flytekit.core.promise.VoidPromise, typing.Coroutine, NoneType]

This function is used only in the local execution path and is responsible for calling dispatch execute. Use this function when calling a task with native values (or Promises containing Flyte literals derived from Python native values).

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
kwargs **kwargs

local_execution_mode()

def local_execution_mode()

post_execute()

def post_execute(
    user_params: typing.Optional[flytekit.core.context_manager.ExecutionParameters],
    rval: typing.Any,
) -> typing.Any

Post execute is called after the execution has completed, with the user_params and can be used to clean-up, or alter the outputs to match the intended tasks outputs. If not overridden, then this function is a No-op

Parameter Type
user_params typing.Optional[flytekit.core.context_manager.ExecutionParameters]
rval typing.Any

pre_execute()

def pre_execute(
    user_params: typing.Optional[flytekit.core.context_manager.ExecutionParameters],
) -> typing.Optional[flytekit.core.context_manager.ExecutionParameters]

This is the method that will be invoked directly before executing the task method and before all the inputs are converted. One particular case where this is useful is if the context is to be modified for the user process to get some user space parameters. This also ensures that things like SparkSession are already correctly setup before the type transformers are called

This should return either the same context of the mutated context

Parameter Type
user_params typing.Optional[flytekit.core.context_manager.ExecutionParameters]

sandbox_execute()

def sandbox_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
) -> flytekit.models.literals.LiteralMap

Call dispatch_execute, in the context of a local sandbox execution. Not invoked during runtime.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

Properties

Property Type Description
deck_fields
If not empty, this task will output deck html file for the specified decks
disable_deck
If true, this task will not output deck html file
docs
enable_deck
If true, this task will output deck html file
environment
Any environment variables that supplied during the execution of the task.
instantiated_in
interface
lhs
location
metadata
name
python_interface
Returns this task’s python interface.
security_context
task_config
Returns the user-specified task config which is used for plugin-specific handling of the task.
task_type
task_type_version

flytekitplugins.openai.batch.task.BatchResult

class BatchResult(
    output_file: typing.Optional[flytekit.types.file.file.FlyteFile.__class_getitem__.<locals>._SpecificFormatClass],
    error_file: typing.Optional[flytekit.types.file.file.FlyteFile.__class_getitem__.<locals>._SpecificFormatClass],
)
Parameter Type
output_file typing.Optional[flytekit.types.file.file.FlyteFile.__class_getitem__.<locals>._SpecificFormatClass]
error_file typing.Optional[flytekit.types.file.file.FlyteFile.__class_getitem__.<locals>._SpecificFormatClass]

Methods

Method Description
from_dict()
from_json()
to_dict()
to_json()

from_dict()

def from_dict(
    d,
    dialect,
)
Parameter Type
d
dialect

from_json()

def from_json(
    data: typing.Union[str, bytes, bytearray],
    decoder: collections.abc.Callable[[typing.Union[str, bytes, bytearray]], dict[typing.Any, typing.Any]],
    from_dict_kwargs: typing.Any,
) -> ~T
Parameter Type
data typing.Union[str, bytes, bytearray]
decoder collections.abc.Callable[[typing.Union[str, bytes, bytearray]], dict[typing.Any, typing.Any]]
from_dict_kwargs typing.Any

to_dict()

def to_dict()

to_json()

def to_json(
    encoder: collections.abc.Callable[[typing.Any], typing.Union[str, bytes, bytearray]],
    to_dict_kwargs: typing.Any,
) -> typing.Union[str, bytes, bytearray]
Parameter Type
encoder collections.abc.Callable[[typing.Any], typing.Union[str, bytes, bytearray]]
to_dict_kwargs typing.Any

flytekitplugins.openai.batch.task.DownloadJSONFilesExecutor

Please see the notes for the metaclass above first.

This functionality has two use-cases currently,

  • Keep track of naming for non-function PythonAutoContainerTasks. That is, things like the :py:class:flytekit.extras.sqlite3.task.SQLite3Task task.
  • Task resolvers, because task resolvers are instances of :py:class:flytekit.core.python_auto_container.TaskResolverMixin classes, not the classes themselves, which means we need to look on the left hand side of them to see how to find them at task execution time.
class DownloadJSONFilesExecutor(
    args,
    kwargs,
)
Parameter Type
args *args
kwargs **kwargs

Methods

Method Description
execute_from_model() This function must be overridden and is where all the business logic for running a task should live.
find_lhs()

execute_from_model()

def execute_from_model(
    tt: flytekit.models.task.TaskTemplate,
    kwargs,
) -> n: Python native output values from the task.

This function must be overridden and is where all the business logic for running a task should live. Keep in mind that you’re only working with the TaskTemplate. You won’t have access to any information in the task that wasn’t serialized into the template.

Parameter Type
tt flytekit.models.task.TaskTemplate
kwargs **kwargs

find_lhs()

def find_lhs()

Properties

Property Type Description
instantiated_in
lhs
location

flytekitplugins.openai.batch.task.DownloadJSONFilesTask

Please take a look at the comments for :py:classflytekit.extend.ExecutableTemplateShimTask as well. This class should be subclassed and a custom Executor provided as a default to this parent class constructor when building a new external-container flytekit-only plugin.

This class provides authors of new task types the basic scaffolding to create task-template based tasks. In order to write such a task, authors need to

  • subclass the ShimTaskExecutor class and override the execute_from_model function. This function is where all the business logic should go. Keep in mind though that you, the plugin author, will not have access to anything that’s not serialized within the TaskTemplate which is why you’ll also need to
  • subclass this class, and override the get_custom function to include all the information the executor will need to run.
  • Also pass the executor you created as the executor_type argument of this class’s constructor.

Keep in mind that the total size of the TaskTemplate still needs to be small, since these will be accessed frequently by the Flyte engine.

class DownloadJSONFilesTask(
    name: str,
    task_config: flytekitplugins.openai.batch.task.OpenAIFileConfig,
    container_image: str,
    kwargs,
)
Parameter Type
name str
task_config flytekitplugins.openai.batch.task.OpenAIFileConfig
container_image str
kwargs **kwargs

Methods

Method Description
compile() Generates a node that encapsulates this task in a workflow definition.
construct_node_metadata() Used when constructing the node that encapsulates this task as part of a broader workflow definition.
dispatch_execute() This function is largely similar to the base PythonTask, with the exception that we have to infer the Python.
execute() Rather than running here, send everything to the executor.
find_lhs()
get_command()
get_config() Returns the task config as a serializable dictionary.
get_container() Returns the container definition (if any) that is used to run the task on hosted Flyte.
get_custom() Return additional plugin-specific custom data (if any) as a serializable dictionary.
get_extended_resources() Returns the extended resources to allocate to the task on hosted Flyte.
get_image()
get_input_types() Returns the names and python types as a dictionary for the inputs of this task.
get_k8s_pod() Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.
get_sql() Returns the Sql definition (if any) that is used to run the task on hosted Flyte.
get_type_for_input_var() Returns the python type for an input variable by name.
get_type_for_output_var() Returns the python type for the specified output variable by name.
local_execute() This function is used only in the local execution path and is responsible for calling dispatch execute.
local_execution_mode()
post_execute() This function is a stub, just here to keep dispatch_execute compatibility between this class and PythonTask.
pre_execute() This function is a stub, just here to keep dispatch_execute compatibility between this class and PythonTask.
sandbox_execute() Call dispatch_execute, in the context of a local sandbox execution.
serialize_to_model()

compile()

def compile(
    ctx: flytekit.core.context_manager.FlyteContext,
    args,
    kwargs,
) -> typing.Union[typing.Tuple[flytekit.core.promise.Promise], flytekit.core.promise.Promise, flytekit.core.promise.VoidPromise, NoneType]

Generates a node that encapsulates this task in a workflow definition.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
args *args
kwargs **kwargs

construct_node_metadata()

def construct_node_metadata()

Used when constructing the node that encapsulates this task as part of a broader workflow definition.

dispatch_execute()

def dispatch_execute(
    ctx: FlyteContext,
    input_literal_map: _literal_models.LiteralMap,
) -> Union[_literal_models.LiteralMap, _dynamic_job.DynamicJobSpec]

This function is largely similar to the base PythonTask, with the exception that we have to infer the Python interface before executing. Also, we refer to self.task_template rather than just self similar to task classes that derive from the base PythonTask.

Parameter Type
ctx FlyteContext
input_literal_map _literal_models.LiteralMap

execute()

def execute(
    kwargs,
) -> Any

Rather than running here, send everything to the executor.

Parameter Type
kwargs **kwargs

find_lhs()

def find_lhs()

get_command()

def get_command(
    settings: SerializationSettings,
) -> List[str]
Parameter Type
settings SerializationSettings

get_config()

def get_config(
    settings: SerializationSettings,
) -> Dict[str, str]

Returns the task config as a serializable dictionary. This task config consists of metadata about the custom defined for this task.

Parameter Type
settings SerializationSettings

get_container()

def get_container(
    settings: SerializationSettings,
) -> _task_model.Container

Returns the container definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_custom()

def get_custom(
    settings: flytekit.configuration.SerializationSettings,
) -> typing.Dict[str, typing.Any]

Return additional plugin-specific custom data (if any) as a serializable dictionary.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_extended_resources()

def get_extended_resources(
    settings: flytekit.configuration.SerializationSettings,
) -> typing.Optional[flyteidl.core.tasks_pb2.ExtendedResources]

Returns the extended resources to allocate to the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_image()

def get_image(
    settings: SerializationSettings,
) -> str
Parameter Type
settings SerializationSettings

get_input_types()

def get_input_types()

Returns the names and python types as a dictionary for the inputs of this task.

get_k8s_pod()

def get_k8s_pod(
    settings: flytekit.configuration.SerializationSettings,
) -> typing.Optional[flytekit.models.task.K8sPod]

Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_sql()

def get_sql(
    settings: flytekit.configuration.SerializationSettings,
) -> typing.Optional[flytekit.models.task.Sql]

Returns the Sql definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_type_for_input_var()

def get_type_for_input_var(
    k: str,
    v: typing.Any,
) -> typing.Type[typing.Any]

Returns the python type for an input variable by name.

Parameter Type
k str
v typing.Any

get_type_for_output_var()

def get_type_for_output_var(
    k: str,
    v: typing.Any,
) -> typing.Type[typing.Any]

Returns the python type for the specified output variable by name.

Parameter Type
k str
v typing.Any

local_execute()

def local_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    kwargs,
) -> typing.Union[typing.Tuple[flytekit.core.promise.Promise], flytekit.core.promise.Promise, flytekit.core.promise.VoidPromise, typing.Coroutine, NoneType]

This function is used only in the local execution path and is responsible for calling dispatch execute. Use this function when calling a task with native values (or Promises containing Flyte literals derived from Python native values).

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
kwargs **kwargs

local_execution_mode()

def local_execution_mode()

post_execute()

def post_execute(
    _: Optional[ExecutionParameters],
    rval: Any,
) -> Any

This function is a stub, just here to keep dispatch_execute compatibility between this class and PythonTask.

Parameter Type
_ Optional[ExecutionParameters]
rval Any

pre_execute()

def pre_execute(
    user_params: Optional[ExecutionParameters],
) -> Optional[ExecutionParameters]

This function is a stub, just here to keep dispatch_execute compatibility between this class and PythonTask.

Parameter Type
user_params Optional[ExecutionParameters]

sandbox_execute()

def sandbox_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
) -> flytekit.models.literals.LiteralMap

Call dispatch_execute, in the context of a local sandbox execution. Not invoked during runtime.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

serialize_to_model()

def serialize_to_model(
    settings: SerializationSettings,
) -> _task_model.TaskTemplate
Parameter Type
settings SerializationSettings

Properties

Property Type Description
container_image
deck_fields
If not empty, this task will output deck html file for the specified decks
disable_deck
If true, this task will not output deck html file
docs
enable_deck
If true, this task will output deck html file
environment
Any environment variables that supplied during the execution of the task.
executor
executor_type
instantiated_in
interface
lhs
location
metadata
name
Return the name of the underlying task.
python_interface
Returns this task’s python interface.
resources
security_context
task_config
Returns the user-specified task config which is used for plugin-specific handling of the task.
task_resolver
task_template
Override the base class implementation to serialize on first call.
task_type
task_type_version

flytekitplugins.openai.batch.task.OpenAIFileConfig

class OpenAIFileConfig(
    secret: flytekit.models.security.Secret,
    openai_organization: typing.Optional[str],
)
Parameter Type
secret flytekit.models.security.Secret
openai_organization typing.Optional[str]

flytekitplugins.openai.batch.task.OpenAIFileDefaultImages

Default images for the openai batch plugin.

Methods

Method Description
default_image()
find_image_for()
get_version_suffix()

default_image()

def default_image()

find_image_for()

def find_image_for(
    python_version: typing.Optional[flytekit.configuration.default_images.PythonVersion],
    flytekit_version: typing.Optional[str],
) -> str
Parameter Type
python_version typing.Optional[flytekit.configuration.default_images.PythonVersion]
flytekit_version typing.Optional[str]

get_version_suffix()

def get_version_suffix()

flytekitplugins.openai.batch.task.UploadJSONLFileExecutor

Please see the notes for the metaclass above first.

This functionality has two use-cases currently,

  • Keep track of naming for non-function PythonAutoContainerTasks. That is, things like the :py:class:flytekit.extras.sqlite3.task.SQLite3Task task.
  • Task resolvers, because task resolvers are instances of :py:class:flytekit.core.python_auto_container.TaskResolverMixin classes, not the classes themselves, which means we need to look on the left hand side of them to see how to find them at task execution time.
class UploadJSONLFileExecutor(
    args,
    kwargs,
)
Parameter Type
args *args
kwargs **kwargs

Methods

Method Description
execute_from_model() This function must be overridden and is where all the business logic for running a task should live.
find_lhs()

execute_from_model()

def execute_from_model(
    tt: flytekit.models.task.TaskTemplate,
    kwargs,
) -> n: Python native output values from the task.

This function must be overridden and is where all the business logic for running a task should live. Keep in mind that you’re only working with the TaskTemplate. You won’t have access to any information in the task that wasn’t serialized into the template.

Parameter Type
tt flytekit.models.task.TaskTemplate
kwargs **kwargs

find_lhs()

def find_lhs()

Properties

Property Type Description
instantiated_in
lhs
location

flytekitplugins.openai.batch.task.UploadJSONLFileTask

Please take a look at the comments for :py:classflytekit.extend.ExecutableTemplateShimTask as well. This class should be subclassed and a custom Executor provided as a default to this parent class constructor when building a new external-container flytekit-only plugin.

This class provides authors of new task types the basic scaffolding to create task-template based tasks. In order to write such a task, authors need to

  • subclass the ShimTaskExecutor class and override the execute_from_model function. This function is where all the business logic should go. Keep in mind though that you, the plugin author, will not have access to anything that’s not serialized within the TaskTemplate which is why you’ll also need to
  • subclass this class, and override the get_custom function to include all the information the executor will need to run.
  • Also pass the executor you created as the executor_type argument of this class’s constructor.

Keep in mind that the total size of the TaskTemplate still needs to be small, since these will be accessed frequently by the Flyte engine.

class UploadJSONLFileTask(
    name: str,
    task_config: flytekitplugins.openai.batch.task.OpenAIFileConfig,
    container_image: str,
    kwargs,
)
Parameter Type
name str
task_config flytekitplugins.openai.batch.task.OpenAIFileConfig
container_image str
kwargs **kwargs

Methods

Method Description
compile() Generates a node that encapsulates this task in a workflow definition.
construct_node_metadata() Used when constructing the node that encapsulates this task as part of a broader workflow definition.
dispatch_execute() This function is largely similar to the base PythonTask, with the exception that we have to infer the Python.
execute() Rather than running here, send everything to the executor.
find_lhs()
get_command()
get_config() Returns the task config as a serializable dictionary.
get_container() Returns the container definition (if any) that is used to run the task on hosted Flyte.
get_custom() Return additional plugin-specific custom data (if any) as a serializable dictionary.
get_extended_resources() Returns the extended resources to allocate to the task on hosted Flyte.
get_image()
get_input_types() Returns the names and python types as a dictionary for the inputs of this task.
get_k8s_pod() Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.
get_sql() Returns the Sql definition (if any) that is used to run the task on hosted Flyte.
get_type_for_input_var() Returns the python type for an input variable by name.
get_type_for_output_var() Returns the python type for the specified output variable by name.
local_execute() This function is used only in the local execution path and is responsible for calling dispatch execute.
local_execution_mode()
post_execute() This function is a stub, just here to keep dispatch_execute compatibility between this class and PythonTask.
pre_execute() This function is a stub, just here to keep dispatch_execute compatibility between this class and PythonTask.
sandbox_execute() Call dispatch_execute, in the context of a local sandbox execution.
serialize_to_model()

compile()

def compile(
    ctx: flytekit.core.context_manager.FlyteContext,
    args,
    kwargs,
) -> typing.Union[typing.Tuple[flytekit.core.promise.Promise], flytekit.core.promise.Promise, flytekit.core.promise.VoidPromise, NoneType]

Generates a node that encapsulates this task in a workflow definition.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
args *args
kwargs **kwargs

construct_node_metadata()

def construct_node_metadata()

Used when constructing the node that encapsulates this task as part of a broader workflow definition.

dispatch_execute()

def dispatch_execute(
    ctx: FlyteContext,
    input_literal_map: _literal_models.LiteralMap,
) -> Union[_literal_models.LiteralMap, _dynamic_job.DynamicJobSpec]

This function is largely similar to the base PythonTask, with the exception that we have to infer the Python interface before executing. Also, we refer to self.task_template rather than just self similar to task classes that derive from the base PythonTask.

Parameter Type
ctx FlyteContext
input_literal_map _literal_models.LiteralMap

execute()

def execute(
    kwargs,
) -> Any

Rather than running here, send everything to the executor.

Parameter Type
kwargs **kwargs

find_lhs()

def find_lhs()

get_command()

def get_command(
    settings: SerializationSettings,
) -> List[str]
Parameter Type
settings SerializationSettings

get_config()

def get_config(
    settings: SerializationSettings,
) -> Dict[str, str]

Returns the task config as a serializable dictionary. This task config consists of metadata about the custom defined for this task.

Parameter Type
settings SerializationSettings

get_container()

def get_container(
    settings: SerializationSettings,
) -> _task_model.Container

Returns the container definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings SerializationSettings

get_custom()

def get_custom(
    settings: flytekit.configuration.SerializationSettings,
) -> typing.Dict[str, typing.Any]

Return additional plugin-specific custom data (if any) as a serializable dictionary.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_extended_resources()

def get_extended_resources(
    settings: flytekit.configuration.SerializationSettings,
) -> typing.Optional[flyteidl.core.tasks_pb2.ExtendedResources]

Returns the extended resources to allocate to the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_image()

def get_image(
    settings: SerializationSettings,
) -> str
Parameter Type
settings SerializationSettings

get_input_types()

def get_input_types()

Returns the names and python types as a dictionary for the inputs of this task.

get_k8s_pod()

def get_k8s_pod(
    settings: flytekit.configuration.SerializationSettings,
) -> typing.Optional[flytekit.models.task.K8sPod]

Returns the kubernetes pod definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_sql()

def get_sql(
    settings: flytekit.configuration.SerializationSettings,
) -> typing.Optional[flytekit.models.task.Sql]

Returns the Sql definition (if any) that is used to run the task on hosted Flyte.

Parameter Type
settings flytekit.configuration.SerializationSettings

get_type_for_input_var()

def get_type_for_input_var(
    k: str,
    v: typing.Any,
) -> typing.Type[typing.Any]

Returns the python type for an input variable by name.

Parameter Type
k str
v typing.Any

get_type_for_output_var()

def get_type_for_output_var(
    k: str,
    v: typing.Any,
) -> typing.Type[typing.Any]

Returns the python type for the specified output variable by name.

Parameter Type
k str
v typing.Any

local_execute()

def local_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    kwargs,
) -> typing.Union[typing.Tuple[flytekit.core.promise.Promise], flytekit.core.promise.Promise, flytekit.core.promise.VoidPromise, typing.Coroutine, NoneType]

This function is used only in the local execution path and is responsible for calling dispatch execute. Use this function when calling a task with native values (or Promises containing Flyte literals derived from Python native values).

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
kwargs **kwargs

local_execution_mode()

def local_execution_mode()

post_execute()

def post_execute(
    _: Optional[ExecutionParameters],
    rval: Any,
) -> Any

This function is a stub, just here to keep dispatch_execute compatibility between this class and PythonTask.

Parameter Type
_ Optional[ExecutionParameters]
rval Any

pre_execute()

def pre_execute(
    user_params: Optional[ExecutionParameters],
) -> Optional[ExecutionParameters]

This function is a stub, just here to keep dispatch_execute compatibility between this class and PythonTask.

Parameter Type
user_params Optional[ExecutionParameters]

sandbox_execute()

def sandbox_execute(
    ctx: flytekit.core.context_manager.FlyteContext,
    input_literal_map: flytekit.models.literals.LiteralMap,
) -> flytekit.models.literals.LiteralMap

Call dispatch_execute, in the context of a local sandbox execution. Not invoked during runtime.

Parameter Type
ctx flytekit.core.context_manager.FlyteContext
input_literal_map flytekit.models.literals.LiteralMap

serialize_to_model()

def serialize_to_model(
    settings: SerializationSettings,
) -> _task_model.TaskTemplate
Parameter Type
settings SerializationSettings

Properties

Property Type Description
container_image
deck_fields
If not empty, this task will output deck html file for the specified decks
disable_deck
If true, this task will not output deck html file
docs
enable_deck
If true, this task will output deck html file
environment
Any environment variables that supplied during the execution of the task.
executor
executor_type
instantiated_in
interface
lhs
location
metadata
name
Return the name of the underlying task.
python_interface
Returns this task’s python interface.
resources
security_context
task_config
Returns the user-specified task config which is used for plugin-specific handling of the task.
task_resolver
task_template
Override the base class implementation to serialize on first call.
task_type
task_type_version