flytekitplugins.onnxscikitlearn.schema
flytekitplugins.onnxscikitlearn.schema
Directory
Classes
Methods
Methods
def extract_config (
t: Type[ScikitLearn2ONNX],
) -> Tuple[Type[ScikitLearn2ONNX], ScikitLearn2ONNXConfig]
Parameter
Type
t
Type[ScikitLearn2ONNX]
to_onnx()
def to_onnx (
ctx,
model,
config,
)
Parameter
Type
ctx
model
config
flytekitplugins.onnxscikitlearn.schema.ScikitLearn2ONNX
class ScikitLearn2ONNX (
model: sklearn. base. BaseEstimator,
)
Parameter
Type
model
sklearn.base.BaseEstimator
Methods
from_dict()
def from_dict (
kvs: typing. Union[dict, list, str, int, float, bool, NoneType],
infer_missing,
) -> ~ A
Parameter
Type
kvs
typing.Union[dict, list, str, int, float, bool, NoneType]
infer_missing
from_json()
def from_json (
s: typing. Union[str, bytes, bytearray],
parse_float,
parse_int,
parse_constant,
infer_missing,
kw,
) -> ~ A
Parameter
Type
s
typing.Union[str, bytes, bytearray]
parse_float
parse_int
parse_constant
infer_missing
kw
schema()
def schema (
infer_missing: bool,
only,
exclude,
many: bool,
context,
load_only,
dump_only,
partial: bool,
unknown,
) -> SchemaType[A]
Parameter
Type
infer_missing
bool
only
exclude
many
bool
context
load_only
dump_only
partial
bool
unknown
to_dict()
def to_dict (
encode_json,
) -> typing. Dict[str, typing. Union[dict, list, str, int, float, bool, NoneType]]
Parameter
Type
encode_json
to_json()
def to_json (
skipkeys: bool,
ensure_ascii: bool,
check_circular: bool,
allow_nan: bool,
indent: typing. Union[int, str, NoneType],
separators: typing. Tuple[str, str],
default: typing. Callable,
sort_keys: bool,
kw,
) -> str
Parameter
Type
skipkeys
bool
ensure_ascii
bool
check_circular
bool
allow_nan
bool
indent
typing.Union[int, str, NoneType]
separators
typing.Tuple[str, str]
default
typing.Callable
sort_keys
bool
kw
flytekitplugins.onnxscikitlearn.schema.ScikitLearn2ONNXConfig
ScikitLearn2ONNXConfig is the config used during the scikitlearn to ONNX conversion.
class ScikitLearn2ONNXConfig (
initial_types: List[Tuple[str, Type]],
name: Optional[str],
doc_string: str,
target_opset: Optional[int],
custom_conversion_functions: Dict[Callable[... , Any], Callable[... , None ]],
custom_shape_calculators: Dict[Callable[... , Any], Callable[... , None ]],
custom_parsers: Dict[Callable[... , Any], Callable[... , None ]],
options: Dict[Any, Any],
intermediate: bool,
naming: Optional[Union[str, Callable[... , Any]]],
white_op: Optional[Set[str]],
black_op: Optional[Set[str]],
verbose: int,
final_types: Optional[List[Tuple[str, Type]]],
)
Parameter
Type
initial_types
List[Tuple[str, Type]]
name
Optional[str]
doc_string
str
target_opset
Optional[int]
custom_conversion_functions
Dict[Callable[..., Any], Callable[..., None]]
custom_shape_calculators
Dict[Callable[..., Any], Callable[..., None]]
custom_parsers
Dict[Callable[..., Any], Callable[..., None]]
options
Dict[Any, Any]
intermediate
bool
naming
Optional[Union[str, Callable[..., Any]]]
white_op
Optional[Set[str]]
black_op
Optional[Set[str]]
verbose
int
final_types
Optional[List[Tuple[str, Type]]]
Methods
from_dict()
def from_dict (
kvs: typing. Union[dict, list, str, int, float, bool, NoneType],
infer_missing,
) -> ~ A
Parameter
Type
kvs
typing.Union[dict, list, str, int, float, bool, NoneType]
infer_missing
from_json()
def from_json (
s: typing. Union[str, bytes, bytearray],
parse_float,
parse_int,
parse_constant,
infer_missing,
kw,
) -> ~ A
Parameter
Type
s
typing.Union[str, bytes, bytearray]
parse_float
parse_int
parse_constant
infer_missing
kw
schema()
def schema (
infer_missing: bool,
only,
exclude,
many: bool,
context,
load_only,
dump_only,
partial: bool,
unknown,
) -> SchemaType[A]
Parameter
Type
infer_missing
bool
only
exclude
many
bool
context
load_only
dump_only
partial
bool
unknown
to_dict()
def to_dict (
encode_json,
) -> typing. Dict[str, typing. Union[dict, list, str, int, float, bool, NoneType]]
Parameter
Type
encode_json
to_json()
def to_json (
skipkeys: bool,
ensure_ascii: bool,
check_circular: bool,
allow_nan: bool,
indent: typing. Union[int, str, NoneType],
separators: typing. Tuple[str, str],
default: typing. Callable,
sort_keys: bool,
kw,
) -> str
Parameter
Type
skipkeys
bool
ensure_ascii
bool
check_circular
bool
allow_nan
bool
indent
typing.Union[int, str, NoneType]
separators
typing.Tuple[str, str]
default
typing.Callable
sort_keys
bool
kw
Base transformer type that should be implemented for every python native type that can be handled by flytekit
def ScikitLearn2ONNXTransformer ()
Methods
assert_type()
def assert_type (
t: Type[T],
v: T,
)
Parameter
Type
t
Type[T]
v
T
from_binary_idl()
def from_binary_idl (
binary_idl_object: Binary,
expected_python_type: Type[T],
) -> Optional[T]
This function primarily handles deserialization for untyped dicts, dataclasses, Pydantic BaseModels, and attribute access.`
For untyped dict, dataclass, and pydantic basemodel:
Life Cycle (Untyped Dict as example):
python val -> msgpack bytes -> binary literal scalar -> msgpack bytes -> python val
(to_literal) (from_binary_idl)
For attribute access:
Life Cycle:
python val -> msgpack bytes -> binary literal scalar -> resolved golang value -> binary literal scalar -> msgpack bytes -> python val
(to_literal) (propeller attribute access) (from_binary_idl)
Parameter
Type
binary_idl_object
Binary
expected_python_type
Type[T]
from_generic_idl()
def from_generic_idl (
generic: Struct,
expected_python_type: Type[T],
) -> Optional[T]
TODO: Support all Flyte Types.
This is for dataclass attribute access from input created from the Flyte Console.
Note:
This can be removed in the future when the Flyte Console support generate Binary IDL Scalar as input.
Parameter
Type
generic
Struct
expected_python_type
Type[T]
get_literal_type()
def get_literal_type (
t: Type[ScikitLearn2ONNX],
) -> LiteralType
Converts the python type to a Flyte LiteralType
Parameter
Type
t
Type[ScikitLearn2ONNX]
guess_python_type()
def guess_python_type (
literal_type: LiteralType,
) -> Type[ScikitLearn2ONNX]
Converts the Flyte LiteralType to a python object type.
Parameter
Type
literal_type
LiteralType
isinstance_generic()
def isinstance_generic (
obj,
generic_alias,
)
Parameter
Type
obj
generic_alias
to_html()
def to_html (
ctx: FlyteContext,
python_val: T,
expected_python_type: Type[T],
) -> str
Converts any python val (dataframe, int, float) to a html string, and it will be wrapped in the HTML div
Parameter
Type
ctx
FlyteContext
python_val
T
expected_python_type
Type[T]
to_literal()
def to_literal (
ctx: FlyteContext,
python_val: ScikitLearn2ONNX,
python_type: Type[ScikitLearn2ONNX],
expected: LiteralType,
) -> Literal
Converts a given python_val to a Flyte Literal, assuming the given python_val matches the declared python_type.
Implementers should refrain from using type(python_val) instead rely on the passed in python_type. If these
do not match (or are not allowed) the Transformer implementer should raise an AssertionError, clearly stating
what was the mismatch
Parameter
Type
ctx
FlyteContext
python_val
ScikitLearn2ONNX
python_type
Type[ScikitLearn2ONNX]
expected
LiteralType
to_python_value()
def to_python_value (
ctx: FlyteContext,
lv: Literal,
expected_python_type: Type[ONNXFile],
) -> ONNXFile
Converts the given Literal to a Python Type. If the conversion cannot be done an AssertionError should be raised
Parameter
Type
ctx
FlyteContext
lv
Literal
expected_python_type
Type[ONNXFile]
Properties
Property
Type
Description
is_async
name
python_type
This returns the python type
type_assertions_enabled
Indicates if the transformer wants type assertions to be enabled at the core type engine layer