0.1.dev2192+g7c539c3.d20250403

flytekit.configuration

Configuration

Flytekit Configuration Sources

There are multiple ways to configure flytekit settings:

Command Line Arguments

This is the recommended way of setting configuration values for many cases. For example, see pyflyte package command.

Python Config Object

A Config object can be used directly, e.g. when initializing a FlyteRemote object. See the Control Plane design docs for examples on how to specify a Config object.

Environment Variables

Users can specify these at compile time, but when your task is run, Flyte Propeller will also set configuration to ensure correct interaction with the platform. The environment variables must be specified with the format FLYTE_{SECTION}_{OPTION}, all in upper case. For example, to specify the PlatformConfig.endpoint setting, the environment variable would be FLYTE_PLATFORM_URL.

Environment variables won’t work for image configuration, which need to be specified with the pyflyte package --image ... option or in a configuration file.

YAML Format Configuration File

A configuration file that contains settings for both flytectl and flytekit. This is the recommended configuration file format. Invoke the flytectl config init command to create a boilerplate ~/.flyte/config.yaml file, and flytectl --help to learn about all of the configuration yaml options.

Example config.yaml file:

# Sample config file

admin:
  # For GRPC endpoints you might want to use dns:///flyte.myexample.com
  endpoint: dns:///localhost:8089
  authType: Pkce
  insecure: true

logger:
  show-source: true
  level: 0

console:
  endpoint: http://localhost:8080
  insecure: true

# This section is used only in the control plane to trigger a remote execution
storage:
  type: minio
  stow:
    kind: s3
    config:
      auth_type: accesskey
      access_key_id: minio
      secret_key: miniostorage
      endpoint: http://localhost:9000
      region: us-east-1
      disable_ssl: true
      addressing_style: "path"


### INI Format Configuration File
A configuration file for `flytekit`. By default, `flytekit` will look for a file in two places:

1. First, a file named `flytekit.config` in the Python interpreter's working directory.
2. A file in `~/.flyte/config` in the home directory as detected by Python.

Example `flytekit.config` file:
```ini
[sdk]
workflow_packages=my_cool_workflows, other_workflows

The INI format configuration is considered a legacy configuration format. We recommend using the yaml format instead if you’re using a configuration file.

How is configuration used?

Configuration usage can roughly be bucketed into the following areas:

  • Compile-time settings: these are settings like the default image and named images, where to look for Flyte code, etc.
  • Platform settings: Where to find the Flyte backend (Admin DNS, whether to use SSL)
  • Registration Run-time settings: these are things like the K8s service account to use, a specific S3/GCS bucket to write off-loaded data (dataframes and files) to, notifications, labels & annotations, etc.
  • Data access settings: Is there a custom S3 endpoint in use? Backoff/retry behavior for accessing S3/GCS, key and password, etc.
  • Other settings - Statsd configuration, which is a run-time applicable setting but is not necessarily relevant to the Flyte platform.

Configuration Objects

The following objects are encapsulated in a parent object called Config:

Serialization Time Settings

These are serialization/compile-time settings that are used when using commands like pyflyte package or pyflyte register. These configuration settings are typically passed in as flags to the above CLI commands.

The image configurations are typically either passed in via an --image flag, or can be specified in the yaml or ini configuration files (see examples above).

  • Image: Represents a container image with optional configuration overrides.
  • ImageConfig: Represents an image configuration for a given project/domain combination.
  • SerializationSettings: Controls how to serialize Flyte entities when registering with Admin.
  • FastSerializationSettings: Configuration for faster serialization settings.

Execution Time Settings

Users typically shouldn’t be concerned with these configurations, as they are typically set by FlytePropeller or FlyteAdmin. The configurations below are useful for authenticating to a Flyte backend, configuring data access credentials, secrets, and statsd metrics.

  • PlatformConfig: Configuration for how to connect to the Flyte platform.
  • StatsConfig: Configuration for how to emit statsd metrics.
  • SecretsConfig: Configuration for how to access secrets.
  • S3Config: Amazon S3 specific configuration.
  • GCSConfig: Google Cloud Storage specific configuration.
  • DataConfig: Configuration for data access.

Directory

Classes

Class Description
AzureBlobStorageConfig Any Azure Blob Storage specific configuration.
Config This the parent configuration object and holds all the underlying configuration object types.
DataConfig Any data storage specific configuration.
EntrypointSettings This object carries information about the path of the entrypoint command that will be invoked at runtime.
FastSerializationSettings This object hold information about settings necessary to serialize an object so that it can be fast-registered.
GCSConfig Any GCS specific configuration.
GenericPersistenceConfig Data storage configuration that applies across any provider.
Image Image is a structured wrapper for task container images used in object serialization.
ImageConfig We recommend you to use ImageConfig.
LocalConfig Any configuration specific to local runs.
PlatformConfig This object contains the settings to talk to a Flyte backend (the DNS location of your Admin server basically).
S3Config S3 specific configuration.
SecretsConfig Configuration for secrets.
SerializationSettings These settings are provided while serializing a workflow and task, before registration.
StatsConfig Configuration for sending statsd.

Variables

Property Type Description
DEFAULT_FLYTEKIT_ENTRYPOINT_FILELOC str
DEFAULT_IMAGE_NAME str
DEFAULT_IN_CONTAINER_SRC_PATH str
DEFAULT_RUNTIME_PYTHON_INTERPRETER str
DOMAIN_PLACEHOLDER str
PROJECT_PLACEHOLDER str
SERIALIZED_CONTEXT_ENV_VAR str
VERSION_PLACEHOLDER str

flytekit.configuration.AzureBlobStorageConfig

Any Azure Blob Storage specific configuration.

class AzureBlobStorageConfig(
    account_name: typing.Optional[str],
    account_key: typing.Optional[str],
    tenant_id: typing.Optional[str],
    client_id: typing.Optional[str],
    client_secret: typing.Optional[str],
)
Parameter Type
account_name typing.Optional[str]
account_key typing.Optional[str]
tenant_id typing.Optional[str]
client_id typing.Optional[str]
client_secret typing.Optional[str]

Methods

Method Description
auto()

auto()

def auto(
    config_file: typing.Union[str, ConfigFile],
) -> GCSConfig
Parameter Type
config_file typing.Union[str, ConfigFile]

flytekit.configuration.Config

This the parent configuration object and holds all the underlying configuration object types. An instance of this object holds all the config necessary to

  1. Interactive session with Flyte backend
  2. Some parts are required for Serialization, for example Platform Config is not required
  3. Runtime of a task
class Config(
    platform: PlatformConfig,
    secrets: SecretsConfig,
    stats: StatsConfig,
    data_config: DataConfig,
    local_sandbox_path: str,
)
Parameter Type
platform PlatformConfig
secrets SecretsConfig
stats StatsConfig
data_config DataConfig
local_sandbox_path str

Methods

Method Description
auto() Automatically constructs the Config Object.
for_endpoint() Creates an automatic config for the given endpoint and uses the config_file or environment variable for default.
for_sandbox() Constructs a new Config object specifically to connect to :std:ref:deployment-deployment-sandbox.
with_params()

auto()

def auto(
    config_file: typing.Union[str, ConfigFile, None],
) -> n: Config

Automatically constructs the Config Object. The order of precedence is as follows

  1. first try to find any env vars that match the config vars specified in the FLYTE_CONFIG format.
  2. If not found in environment then values ar read from the config file
  3. If not found in the file, then the default values are used.
Parameter Type
config_file typing.Union[str, ConfigFile, None]

for_endpoint()

def for_endpoint(
    endpoint: str,
    insecure: bool,
    data_config: typing.Optional[DataConfig],
    config_file: typing.Union[str, ConfigFile],
) -> n: Config

Creates an automatic config for the given endpoint and uses the config_file or environment variable for default. Refer to Config.auto() to understand the default bootstrap behavior.

data_config can be used to configure how data is downloaded or uploaded to a specific Blob storage like S3 / GCS etc. But, for permissions to a specific backend just use Cloud providers reqcommendation. If using fsspec, then refer to fsspec documentation

Parameter Type
endpoint str
insecure bool
data_config typing.Optional[DataConfig]
config_file typing.Union[str, ConfigFile]

for_sandbox()

def for_sandbox()

Constructs a new Config object specifically to connect to :std:ref:deployment-deployment-sandbox. If you are using a hosted Sandbox like environment, then you may need to use port-forward or ingress urls :return: Config

with_params()

def with_params(
    platform: PlatformConfig,
    secrets: SecretsConfig,
    stats: StatsConfig,
    data_config: DataConfig,
    local_sandbox_path: str,
) -> Config
Parameter Type
platform PlatformConfig
secrets SecretsConfig
stats StatsConfig
data_config DataConfig
local_sandbox_path str

flytekit.configuration.DataConfig

Any data storage specific configuration. Please do not use this to store secrets, in S3 case, as it is used in Flyte sandbox environment we store the access key id and secret. All DataPersistence plugins are passed all DataConfig and the plugin should correctly use the right config

class DataConfig(
    s3: S3Config,
    gcs: GCSConfig,
    azure: AzureBlobStorageConfig,
    generic: GenericPersistenceConfig,
)
Parameter Type
s3 S3Config
gcs GCSConfig
azure AzureBlobStorageConfig
generic GenericPersistenceConfig

Methods

Method Description
auto()

auto()

def auto(
    config_file: typing.Union[str, ConfigFile],
) -> DataConfig
Parameter Type
config_file typing.Union[str, ConfigFile]

flytekit.configuration.EntrypointSettings

This object carries information about the path of the entrypoint command that will be invoked at runtime. This is where pyflyte-execute code can be found. This is useful for cases like pyspark execution.

class EntrypointSettings(
    path: Optional[str],
)
Parameter Type
path Optional[str]

Methods

Method Description
from_dict()
from_json()
schema()
to_dict()
to_json()

from_dict()

def from_dict(
    kvs: typing.Union[dict, list, str, int, float, bool, NoneType],
    infer_missing,
) -> ~A
Parameter Type
kvs typing.Union[dict, list, str, int, float, bool, NoneType]
infer_missing

from_json()

def from_json(
    s: typing.Union[str, bytes, bytearray],
    parse_float,
    parse_int,
    parse_constant,
    infer_missing,
    kw,
) -> ~A
Parameter Type
s typing.Union[str, bytes, bytearray]
parse_float
parse_int
parse_constant
infer_missing
kw

schema()

def schema(
    infer_missing: bool,
    only,
    exclude,
    many: bool,
    context,
    load_only,
    dump_only,
    partial: bool,
    unknown,
) -> SchemaType[A]
Parameter Type
infer_missing bool
only
exclude
many bool
context
load_only
dump_only
partial bool
unknown

to_dict()

def to_dict(
    encode_json,
) -> typing.Dict[str, typing.Union[dict, list, str, int, float, bool, NoneType]]
Parameter Type
encode_json

to_json()

def to_json(
    skipkeys: bool,
    ensure_ascii: bool,
    check_circular: bool,
    allow_nan: bool,
    indent: typing.Union[int, str, NoneType],
    separators: typing.Tuple[str, str],
    default: typing.Callable,
    sort_keys: bool,
    kw,
) -> str
Parameter Type
skipkeys bool
ensure_ascii bool
check_circular bool
allow_nan bool
indent typing.Union[int, str, NoneType]
separators typing.Tuple[str, str]
default typing.Callable
sort_keys bool
kw

flytekit.configuration.FastSerializationSettings

This object hold information about settings necessary to serialize an object so that it can be fast-registered.

class FastSerializationSettings(
    enabled: bool,
    destination_dir: Optional[str],
    distribution_location: Optional[str],
)
Parameter Type
enabled bool
destination_dir Optional[str]
distribution_location Optional[str]

Methods

Method Description
from_dict()
from_json()
schema()
to_dict()
to_json()

from_dict()

def from_dict(
    kvs: typing.Union[dict, list, str, int, float, bool, NoneType],
    infer_missing,
) -> ~A
Parameter Type
kvs typing.Union[dict, list, str, int, float, bool, NoneType]
infer_missing

from_json()

def from_json(
    s: typing.Union[str, bytes, bytearray],
    parse_float,
    parse_int,
    parse_constant,
    infer_missing,
    kw,
) -> ~A
Parameter Type
s typing.Union[str, bytes, bytearray]
parse_float
parse_int
parse_constant
infer_missing
kw

schema()

def schema(
    infer_missing: bool,
    only,
    exclude,
    many: bool,
    context,
    load_only,
    dump_only,
    partial: bool,
    unknown,
) -> SchemaType[A]
Parameter Type
infer_missing bool
only
exclude
many bool
context
load_only
dump_only
partial bool
unknown

to_dict()

def to_dict(
    encode_json,
) -> typing.Dict[str, typing.Union[dict, list, str, int, float, bool, NoneType]]
Parameter Type
encode_json

to_json()

def to_json(
    skipkeys: bool,
    ensure_ascii: bool,
    check_circular: bool,
    allow_nan: bool,
    indent: typing.Union[int, str, NoneType],
    separators: typing.Tuple[str, str],
    default: typing.Callable,
    sort_keys: bool,
    kw,
) -> str
Parameter Type
skipkeys bool
ensure_ascii bool
check_circular bool
allow_nan bool
indent typing.Union[int, str, NoneType]
separators typing.Tuple[str, str]
default typing.Callable
sort_keys bool
kw

flytekit.configuration.GCSConfig

Any GCS specific configuration.

class GCSConfig(
    gsutil_parallelism: bool,
)
Parameter Type
gsutil_parallelism bool

Methods

Method Description
auto()

auto()

def auto(
    config_file: typing.Union[str, ConfigFile],
) -> GCSConfig
Parameter Type
config_file typing.Union[str, ConfigFile]

flytekit.configuration.GenericPersistenceConfig

Data storage configuration that applies across any provider.

class GenericPersistenceConfig(
    attach_execution_metadata: bool,
)
Parameter Type
attach_execution_metadata bool

Methods

Method Description
auto()

auto()

def auto(
    config_file: typing.Union[str, ConfigFile],
) -> GCSConfig
Parameter Type
config_file typing.Union[str, ConfigFile]

flytekit.configuration.Image

Image is a structured wrapper for task container images used in object serialization.

Attributes: name (str): A user-provided name to identify this image. fqn (str): Fully qualified image name. This consists of #. a registry location #. a username #. a repository name For example: hostname/username/reponame tag (str): Optional tag used to specify which version of an image to pull digest (str): Optional digest used to specify which version of an image to pull

class Image(
    name: str,
    fqn: str,
    tag: Optional[str],
    digest: Optional[str],
)
Parameter Type
name str
fqn str
tag Optional[str]
digest Optional[str]

Methods

Method Description
from_dict()
from_json()
look_up_image_info() Creates an Image object from an image identifier string or a path to an ImageSpec yaml file.
schema()
to_dict()
to_json()

from_dict()

def from_dict(
    kvs: typing.Union[dict, list, str, int, float, bool, NoneType],
    infer_missing,
) -> ~A
Parameter Type
kvs typing.Union[dict, list, str, int, float, bool, NoneType]
infer_missing

from_json()

def from_json(
    s: typing.Union[str, bytes, bytearray],
    parse_float,
    parse_int,
    parse_constant,
    infer_missing,
    kw,
) -> ~A
Parameter Type
s typing.Union[str, bytes, bytearray]
parse_float
parse_int
parse_constant
infer_missing
kw

look_up_image_info()

def look_up_image_info(
    name: str,
    image_identifier: str,
    allow_no_tag_or_digest: bool,
) -> e: Image

Creates an Image object from an image identifier string or a path to an ImageSpec yaml file.

This function is used when registering tasks/workflows with Admin. When using the canonical Python-based development cycle, the version that is used to register workflows and tasks with Admin should be the version of the image itself, which should ideally be something unique like the git revision SHA1 of the latest commit.

Parameter Type
name str
image_identifier str
allow_no_tag_or_digest bool

schema()

def schema(
    infer_missing: bool,
    only,
    exclude,
    many: bool,
    context,
    load_only,
    dump_only,
    partial: bool,
    unknown,
) -> SchemaType[A]
Parameter Type
infer_missing bool
only
exclude
many bool
context
load_only
dump_only
partial bool
unknown

to_dict()

def to_dict(
    encode_json,
) -> typing.Dict[str, typing.Union[dict, list, str, int, float, bool, NoneType]]
Parameter Type
encode_json

to_json()

def to_json(
    skipkeys: bool,
    ensure_ascii: bool,
    check_circular: bool,
    allow_nan: bool,
    indent: typing.Union[int, str, NoneType],
    separators: typing.Tuple[str, str],
    default: typing.Callable,
    sort_keys: bool,
    kw,
) -> str
Parameter Type
skipkeys bool
ensure_ascii bool
check_circular bool
allow_nan bool
indent typing.Union[int, str, NoneType]
separators typing.Tuple[str, str]
default typing.Callable
sort_keys bool
kw

Properties

Property Type Description
full
"
Return the full image name with tag or digest, whichever is available.
When using a tag the separator is : and when using a digest the separator is @.
version
Return the version of the image. This could be the tag or digest, whichever is available.

flytekit.configuration.ImageConfig

We recommend you to use ImageConfig.auto(img_name=None) to create an ImageConfig. For example, ImageConfig.auto(img_name=““ghcr.io/flyteorg/flytecookbook:v1.0.0"”) will create an ImageConfig.

ImageConfig holds available images which can be used at registration time. A default image can be specified along with optional additional images. Each image in the config must have a unique name.

Attributes: default_image (Optional[Image]): The default image to be used as a container for task serialization. images (List[Image]): Optional, additional images which can be used in task container definitions.

class ImageConfig(
    default_image: Optional[Image],
    images: Optional[List[Image]],
)
Parameter Type
default_image Optional[Image]
images Optional[List[Image]]

Methods

Method Description
auto() Reads from config file or from img_name.
auto_default_image()
create_from()
find_image() Return an image, by name, if it exists.
from_dict()
from_images() Allows you to programmatically create an ImageConfig.
from_json()
schema()
to_dict()
to_json()
validate_image() Validates the image to match the standard format.

auto()

def auto(
    config_file: typing.Union[str, ConfigFile, None],
    img_name: Optional[str],
) -> n:

Reads from config file or from img_name Note that this function does not take into account the flytekit default images (see the Dockerfiles at the base of this repo). To pick those up, see the auto_default_image function..

Parameter Type
config_file typing.Union[str, ConfigFile, None]
img_name Optional[str]

auto_default_image()

def auto_default_image()

create_from()

def create_from(
    default_image: Optional[Image],
    other_images: typing.Optional[typing.List[Image]],
) -> ImageConfig
Parameter Type
default_image Optional[Image]
other_images typing.Optional[typing.List[Image]]

find_image()

def find_image(
    name,
) -> Optional[Image]

Return an image, by name, if it exists.

Parameter Type
name

from_dict()

def from_dict(
    kvs: typing.Union[dict, list, str, int, float, bool, NoneType],
    infer_missing,
) -> ~A
Parameter Type
kvs typing.Union[dict, list, str, int, float, bool, NoneType]
infer_missing

from_images()

def from_images(
    default_image: str,
    m: typing.Optional[typing.Dict[str, str]],
)

Allows you to programmatically create an ImageConfig. Usually only the default_image is required, unless your workflow uses multiple images

ImageConfig.from_dict(
    "ghcr.io/flyteorg/flytecookbook:v1.0.0",
    {
        "spark": "ghcr.io/flyteorg/myspark:...",
        "other": "...",
    }
)

urn:

Parameter Type
default_image str
m typing.Optional[typing.Dict[str, str]]

from_json()

def from_json(
    s: typing.Union[str, bytes, bytearray],
    parse_float,
    parse_int,
    parse_constant,
    infer_missing,
    kw,
) -> ~A
Parameter Type
s typing.Union[str, bytes, bytearray]
parse_float
parse_int
parse_constant
infer_missing
kw

schema()

def schema(
    infer_missing: bool,
    only,
    exclude,
    many: bool,
    context,
    load_only,
    dump_only,
    partial: bool,
    unknown,
) -> SchemaType[A]
Parameter Type
infer_missing bool
only
exclude
many bool
context
load_only
dump_only
partial bool
unknown

to_dict()

def to_dict(
    encode_json,
) -> typing.Dict[str, typing.Union[dict, list, str, int, float, bool, NoneType]]
Parameter Type
encode_json

to_json()

def to_json(
    skipkeys: bool,
    ensure_ascii: bool,
    check_circular: bool,
    allow_nan: bool,
    indent: typing.Union[int, str, NoneType],
    separators: typing.Tuple[str, str],
    default: typing.Callable,
    sort_keys: bool,
    kw,
) -> str
Parameter Type
skipkeys bool
ensure_ascii bool
check_circular bool
allow_nan bool
indent typing.Union[int, str, NoneType]
separators typing.Tuple[str, str]
default typing.Callable
sort_keys bool
kw

validate_image()

def validate_image(
    _: typing.Any,
    param: str,
    values: tuple,
) -> n:

Validates the image to match the standard format. Also validates that only one default image is provided. a default image, is one that is specified as default=<image_uri> or just <image_uri>. All other images should be provided with a name, in the format name=<image_uri> This method can be used with the CLI

Parameter Type
_ typing.Any
param str
values tuple

flytekit.configuration.LocalConfig

Any configuration specific to local runs.

class LocalConfig(
    cache_enabled: bool,
    cache_overwrite: bool,
)
Parameter Type
cache_enabled bool
cache_overwrite bool

Methods

Method Description
auto()

auto()

def auto(
    config_file: typing.Union[str, ConfigFile],
) -> LocalConfig
Parameter Type
config_file typing.Union[str, ConfigFile]

flytekit.configuration.PlatformConfig

This object contains the settings to talk to a Flyte backend (the DNS location of your Admin server basically).

class PlatformConfig(
    endpoint: str,
    insecure: bool,
    insecure_skip_verify: bool,
    ca_cert_file_path: typing.Optional[str],
    console_endpoint: typing.Optional[str],
    command: typing.Optional[typing.List[str]],
    proxy_command: typing.Optional[typing.List[str]],
    client_id: typing.Optional[str],
    client_credentials_secret: typing.Optional[str],
    scopes: List[str],
    auth_mode: AuthType,
    audience: typing.Optional[str],
    rpc_retries: int,
    http_proxy_url: typing.Optional[str],
)
Parameter Type
endpoint str
insecure bool
insecure_skip_verify bool
ca_cert_file_path typing.Optional[str]
console_endpoint typing.Optional[str]
command typing.Optional[typing.List[str]]
proxy_command typing.Optional[typing.List[str]]
client_id typing.Optional[str]
client_credentials_secret typing.Optional[str]
scopes List[str]
auth_mode AuthType
audience typing.Optional[str]
rpc_retries int
http_proxy_url typing.Optional[str]

Methods

Method Description
auto() Reads from Config file, and overrides from Environment variables.
for_endpoint()

auto()

def auto(
    config_file: typing.Optional[typing.Union[str, ConfigFile]],
) -> n:

Reads from Config file, and overrides from Environment variables. Refer to ConfigEntry for details

Parameter Type
config_file typing.Optional[typing.Union[str, ConfigFile]]

for_endpoint()

def for_endpoint(
    endpoint: str,
    insecure: bool,
) -> PlatformConfig
Parameter Type
endpoint str
insecure bool

flytekit.configuration.S3Config

S3 specific configuration

class S3Config(
    enable_debug: bool,
    endpoint: typing.Optional[str],
    retries: int,
    backoff: datetime.timedelta,
    access_key_id: typing.Optional[str],
    secret_access_key: typing.Optional[str],
)
Parameter Type
enable_debug bool
endpoint typing.Optional[str]
retries int
backoff datetime.timedelta
access_key_id typing.Optional[str]
secret_access_key typing.Optional[str]

Methods

Method Description
auto() Automatically configure.

auto()

def auto(
    config_file: typing.Union[str, ConfigFile],
) -> n: Config

Automatically configure

Parameter Type
config_file typing.Union[str, ConfigFile]

flytekit.configuration.SecretsConfig

Configuration for secrets.

class SecretsConfig(
    env_prefix: str,
    default_dir: str,
    file_prefix: str,
)
Parameter Type
env_prefix str
default_dir str
file_prefix str

Methods

Method Description
auto() Reads from environment variable or from config file.

auto()

def auto(
    config_file: typing.Union[str, ConfigFile],
) -> n:

Reads from environment variable or from config file

Parameter Type
config_file typing.Union[str, ConfigFile]

flytekit.configuration.SerializationSettings

These settings are provided while serializing a workflow and task, before registration. This is required to get runtime information at serialization time, as well as some defaults.

Attributes: project (str): The project (if any) with which to register entities under. domain (str): The domain (if any) with which to register entities under. version (str): The version (if any) with which to register entities under. image_config (ImageConfig): The image config used to define task container images. env (Optional[Dict[str, str]]): Environment variables injected into task container definitions. flytekit_virtualenv_root (Optional[str]): During out of container serialize the absolute path of the flytekit virtualenv at serialization time won’t match the in-container value at execution time. This optional value is used to provide the in-container virtualenv path python_interpreter (Optional[str]): The python executable to use. This is used for spark tasks in out of container execution. entrypoint_settings (Optional[EntrypointSettings]): Information about the command, path and version of the entrypoint program. fast_serialization_settings (Optional[FastSerializationSettings]): If the code is being serialized so that it can be fast registered (and thus omit building a Docker image) this object contains additional parameters for serialization. source_root (Optional[str]): The root directory of the source code.

class SerializationSettings(
    image_config: ImageConfig,
    project: typing.Optional[str],
    domain: typing.Optional[str],
    version: typing.Optional[str],
    env: Optional[Dict[str, str]],
    git_repo: Optional[str],
    python_interpreter: str,
    flytekit_virtualenv_root: Optional[str],
    fast_serialization_settings: Optional[FastSerializationSettings],
    source_root: Optional[str],
)
Parameter Type
image_config ImageConfig
project typing.Optional[str]
domain typing.Optional[str]
version typing.Optional[str]
env Optional[Dict[str, str]]
git_repo Optional[str]
python_interpreter str
flytekit_virtualenv_root Optional[str]
fast_serialization_settings Optional[FastSerializationSettings]
source_root Optional[str]

Methods

Method Description
default_entrypoint_settings() Assumes the entrypoint is installed in a virtual-environment where the interpreter is.
for_image()
from_dict()
from_json()
from_transport()
new_builder() Creates a ``SerializationSettings.
schema()
should_fast_serialize() Whether or not the serialization settings specify that entities should be serialized for fast registration.
to_dict()
to_json()
venv_root_from_interpreter() Computes the path of the virtual environment root, based on the passed in python interpreter path.
with_serialized_context() Use this method to create a new SerializationSettings that has an environment variable set with the SerializedContext.

default_entrypoint_settings()

def default_entrypoint_settings(
    interpreter_path: str,
) -> EntrypointSettings

Assumes the entrypoint is installed in a virtual-environment where the interpreter is

Parameter Type
interpreter_path str

for_image()

def for_image(
    image: str,
    version: str,
    project: str,
    domain: str,
    python_interpreter_path: str,
) -> SerializationSettings
Parameter Type
image str
version str
project str
domain str
python_interpreter_path str

from_dict()

def from_dict(
    kvs: typing.Union[dict, list, str, int, float, bool, NoneType],
    infer_missing,
) -> ~A
Parameter Type
kvs typing.Union[dict, list, str, int, float, bool, NoneType]
infer_missing

from_json()

def from_json(
    s: typing.Union[str, bytes, bytearray],
    parse_float,
    parse_int,
    parse_constant,
    infer_missing,
    kw,
) -> ~A
Parameter Type
s typing.Union[str, bytes, bytearray]
parse_float
parse_int
parse_constant
infer_missing
kw

from_transport()

def from_transport(
    s: str,
) -> SerializationSettings
Parameter Type
s str

new_builder()

def new_builder()

Creates a SerializationSettings.Builder that copies the existing serialization settings parameters and allows for customization.

schema()

def schema(
    infer_missing: bool,
    only,
    exclude,
    many: bool,
    context,
    load_only,
    dump_only,
    partial: bool,
    unknown,
) -> SchemaType[A]
Parameter Type
infer_missing bool
only
exclude
many bool
context
load_only
dump_only
partial bool
unknown

should_fast_serialize()

def should_fast_serialize()

Whether or not the serialization settings specify that entities should be serialized for fast registration.

to_dict()

def to_dict(
    encode_json,
) -> typing.Dict[str, typing.Union[dict, list, str, int, float, bool, NoneType]]
Parameter Type
encode_json

to_json()

def to_json(
    skipkeys: bool,
    ensure_ascii: bool,
    check_circular: bool,
    allow_nan: bool,
    indent: typing.Union[int, str, NoneType],
    separators: typing.Tuple[str, str],
    default: typing.Callable,
    sort_keys: bool,
    kw,
) -> str
Parameter Type
skipkeys bool
ensure_ascii bool
check_circular bool
allow_nan bool
indent typing.Union[int, str, NoneType]
separators typing.Tuple[str, str]
default typing.Callable
sort_keys bool
kw

venv_root_from_interpreter()

def venv_root_from_interpreter(
    interpreter_path: str,
) -> str

Computes the path of the virtual environment root, based on the passed in python interpreter path for example /opt/venv/bin/python3 -> /opt/venv

Parameter Type
interpreter_path str

with_serialized_context()

def with_serialized_context()

Use this method to create a new SerializationSettings that has an environment variable set with the SerializedContext This is useful in transporting SerializedContext to serialized and registered tasks. The setting will be available in the env field with the key SERIALIZED_CONTEXT_ENV_VAR :return: A newly constructed SerializationSettings, or self, if it already has the serializationSettings

Properties

Property Type Description
entrypoint_settings
serialized_context
:return: returns the serialization context as a base64encoded, gzip compressed, json strinnn

flytekit.configuration.StatsConfig

Configuration for sending statsd.

class StatsConfig(
    host: str,
    port: int,
    disabled: bool,
    disabled_tags: bool,
)
Parameter Type
host str
port int
disabled bool
disabled_tags bool

Methods

Method Description
auto() Reads from environment variable, followed by ConfigFile provided.

auto()

def auto(
    config_file: typing.Union[str, ConfigFile],
) -> n:

Reads from environment variable, followed by ConfigFile provided

Parameter Type
config_file typing.Union[str, ConfigFile]