Envd
Name: | flytekitplugins-envd |
Version: | 0.0.0+develop |
Author: | admin@flyte.org |
Provides: |
flytekitplugins.envd |
Requires: |
flytekit>=1.12.0 envd |
Python: | >=3.9 |
License: | apache2 |
Source Code: | https://github.com/flyteorg/flytekit/tree/master/plugins/flytekit-envd |
- Intended Audience :: Science/Research
- Intended Audience :: Developers
- License :: OSI Approved :: Apache Software License
- Programming Language :: Python :: 3.9
- Programming Language :: Python :: 3.10
- Programming Language :: Python :: 3.11
- Topic :: Scientific/Engineering
- Topic :: Scientific/Engineering :: Artificial Intelligence
- Topic :: Software Development
- Topic :: Software Development :: Libraries
- Topic :: Software Development :: Libraries :: Python Modules
envd is a command-line tool that helps you create the container-based development environment for AI/ML.
Environments built with envd provide the following features out-of-the-box:
- Knowledge reuse in your team
- BuiltKit native, build up to 6x faster
- Smaller and leaner images
With flytekitplugins-envd
, people easily create a docker image for the workflows without writing a docker file.
To install the plugin, run the following command:
pip install flytekitplugins-envd
Example
# from flytekit import task
# from flytekit.image_spec import ImageSpec
#
# @task(image_spec=ImageSpec(packages=["pandas", "numpy"], apt_packages=["git"], registry="flyteorg"))
# def t1() -> str:
# return "hello"
This plugin also supports install packages from conda
:
from flytekit import task, ImageSpec
image_spec = ImageSpec(
base_image="ubuntu:20.04",
python_version="3.11",
packages=["flytekit"],
conda_packages=["pytorch", "pytorch-cuda=12.1"],
conda_channels=["pytorch", "nvidia"]
)
@task(container_image=image_spec)
def run_pytorch():
...